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Abstract 

We consider an extension of the minimum cost flow problem (MCFP) in a network where each edge (𝑖, 𝑗) (arc or link) 

has a multiplier 𝛼(𝑖, 𝑗). Such problems occur in network based systems where flow is not conserved on every edge. We 

consider this problem for the natural gas distribution networks with edges representing pipelines and compressors 

(multipliers) and nodes connects pipelines together or reroutes pipelines. First, we give an analysis of the problem in 

gas distribution networks from a graph point of view then provide a solution using an extension of the successive 

shortest path algorithm which is illustrated with a numerical example of interest consisting of 7 nodes, 9 pipelines and 2 

compression stations with data chosen arbitrarily. Results indicated that flow is not conserved as gas flow at the sink 

node is reduced compared to that at the start node  
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Introduction 

We had interactions or conversations with individuals or groups 

of people or physical entities can be likened to a web of 

connections or the familiar word network. Thus we may encounter 

social networks, communication networks, telephone networks etc 

in our everyday exploits.  We make use of networks in our 

everyday lives, the telephone networks helps us to communicate 

with people around the world, road, rail and airline networks 

enables us to travel across great distances, manufacturing and 

distribution networks gives us easy access to important products. 

In all these, networks helps with our desire to efficiently transfer 

flow (food, products, fluids, people etc.) from one place to 

another. Our focus is on the natural gas distribution networks 

which is one of the final steps in delivering gas to its end users or 

customers. 

Problems that one may face when transferring flow or products 

from one point or location to another in a network based systems 

are generally called network flow problems. Network flow 

problems are types of optimization problems and can be used in 

modelling assignment, chemical, distribution and other processes 

(Aderibigbe and Apanapudor, 2014), (Park, 2015). Some of these 

problems are the maximum value problem which involves finding 

the maximum amount of flow that can be sent from the start to the 

end nodes, shortest path problem involves finding the shortest or 

cheapest route between two nodes etc. The study and analysis of 

network based systems and their flow is very important in 

modelling and providing optimal solutions to these problems 

(Ahuja et al., 1993),  Apanapudor and Izevbizua (2018). 

Graph theory provides algorithms for solving problems in network 

based systems. Graph theory generally involves points (nodes) 

joined together or connected by lines (edges), it is simply a 

graphical representation of the relationship or connections 

between objects. Mathematically, we can represent a network 𝐺 

by: 

𝐺 = (𝑉, 𝐸) 

Graphically 

 

Figure 1 Simple Flow Network. 

Where 𝑉 is the set of nodes or vertices 𝑖, 𝑗 and 𝐸 is the set of 

edges or links, i.e. 𝑖, 𝑗 ∈ 𝑉 and (𝑖, 𝑗) ∈ 𝐸. 

Graph theory is the study of sets of linked nodes (Rodrigue and 

Ducruet, 2022). These objects (nodes and edges) can be used as 

abstracts for different network based systems and are used to 

model many problems in mathematics, computer science, and 

engineering. In this paper, our focus is on the natural gas 

distribution networks which can be carried out both on land and 

water, (Okwonu and Apanapudor, 2019), (Izevbizua and 

Apanapudor, 2019) 

Distribution of gas is usually one of the final steps in delivering 

natural gas to customers, while it is sometimes distributed directly 

from pipelines(interstate or intrastate) to commercial and 

industrial customers through marketing companies, for others, 

they receive gas from local gas utility. Gas distribution networks 

are made up of pipelines that connects a gas consumer or 

customer from a source. The consumer or the customer has a role 

to play in quantity being ordered to supplied or distributed, 

Izevbizua and Apanapudor(2022). This can easily be represented 

by the network 

 𝐺 = (𝑉, 𝐸) 

In this case 𝑉 is the set of nodes signifying where two or more 

pipelines are connected, where pipelines are rerouted, source 

location of the gas and gas customer(s), while 𝐸 is the set of 

pipelines. 
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Figure 2 A typical natural gas distribution network 

Natural gas networks covers all transmission and distribution 

pipelines that links natural gas from production areas and storage 

facilities with consumers or end users (Farzaneh-Gord, 2016). 

These networks are systems with hundreds or thousands of 

kilometres of pipelines, distribution centers, compression stations, 

regulators and valves that helps deliver gas to consumers 

(Gonzalez, 2009).  

Generalized flow problems are problems associated with a 

generalized network. In a generalized network, each edge has a 

positive flow multiplier associated with it (Cohen & Megiddo, 

1993). This multiplier is said to be loss if its< 1, gain if its > 1 

and results to normal traditional network flow problems if its = 1 

(Ahuja et al., 1993). 

The rest of this paper is organized as follows. Section two dwell 

on materials and methods employed to drive this work to our 

desire. Section three focus on the analysis, results and discussion, 

while four dwelt on the the conclusion and section five discussed 

areas for further studies. 

 

Materials and Methods  

The minimum cost flow problem involves finding the least cost of 

sending flow through a network from its source to end nodes  

Apanapudor (2019). The problem is defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑘(𝑝, 𝑞)𝑓(𝑝, 𝑞)

(𝑝,𝑞)∈𝐸

 

Subject to 

∑ 𝑓(𝑝, 𝑞)

{𝑞:(𝑝,𝑞)∈𝐸}

− ∑ 𝑓(𝑞, 𝑝)

{𝑞:(𝑞,𝑝)∈𝐸}

= 𝑑𝑜 

where for each edge (𝑝, 𝑞) ∈ 𝐸 and nodes 𝑝, 𝑞 ∈ 𝑉,  𝑘(𝑝, 𝑞) is  

cost of shipment through that edge and  𝑓(𝑝, 𝑞) is amount of 

product, 𝑑𝑜 is the node potential. In traditional flow networks, 

there is an assumption that flow is conserved on every edge. That 

is for each edge (𝑖, 𝑗), the amount of flow leaving node 𝑖 equals 

the amount entering 𝑗. This assumption is reasonable in some 

applications. For example if a car company is distributing cars to 

its warehouses, it is reasonable to assume that the amount of cars 

is conserved. This assumption may be violated in some 

applications. 

In this paper, our focus is on the natural gas distribution networks. 

Distribution of such commodity is essential for the wellbeing of 

the consumer, Tsetimi, et al(2021).  While it is reasonable to 

assume that gas flow is conserved for each pipeline since demands 

are satisfied, in practice, this assumption may not be true due to 

the nature of the gas and its network. For example, in situations 

where there is leakage as gas is being transported through a 

pipeline say (𝑖, 𝑗), the gas flow 𝑓(𝑖, 𝑗) that enters (𝑖, 𝑗) through 𝑖 
will be less than the flow that arrives at 𝑗. In addition to minimum 

cost flow problem, we introduce a positive multiplier 𝛼(𝑝, 𝑞) for 

each pipeline, indicating that if gas flow 𝑓(𝑝, 𝑞) enters node 𝑖, 
then 𝛼(𝑝, 𝑞)𝑓(𝑝, 𝑞) enters node 𝑗. Defining the problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑘(𝑝, 𝑞)𝑓(𝑝, 𝑞)

(𝑝,𝑞)∈𝐸

 

Subjected to 
∑ 𝑓(𝑝, 𝑞){𝑞:(𝑝,𝑞)∈𝐸} − ∑ 𝑓(𝑞, 𝑝){𝑞:(𝑞,𝑝)∈𝐸} 𝛼(𝑝, 𝑞) =

𝑑𝑜Methods 

Flow Network 

We define the network 𝐺 with a directed graph:  

𝐺 = (𝑉, 𝐸, 𝑓, 𝑐, 𝑘, 𝛼) 

where 𝐸 is the set of pipelines, 𝑉 is the set of nodes connecting 

the pipelines, 𝑓 is the gas flow, 𝑐 is the capacity of the 

pipeline, 𝑘 is the cost of shipment trough each pipeline, 𝛼 is a 

multiplier attached to each pipeline such that for each unit of 

gas flow 𝑓(𝑖, 𝑗) that enters pipeline (𝑖, 𝑗) having a compression 

station or leak at node 𝑖, only 𝛼(𝑖, 𝑗)𝑓(𝑖, 𝑗) flow arrive at 

node 𝑗. That is: 

 

Figure 3 Flow network with compressor. 

Multiplier 𝜶 

Due to the nature of gas and its networks, the traditional 

conservation of flow for each edge is often violated based on 

limited tolerance on quantity and quality to maintain end-users’ 

demand. Compressor stations are along the networks to restore 

pressure dropped along the line as a result of friction thus 

reducing its volume and correcting its flow speed (Fluenta, 

2019).These stations are usually fuelled by a portion of the gas 

being transported consuming about 3 to 5% of it (Eishiekh, 2014). 

The goal is to solve the minimum cost flow problem with the 

above assumption. Going by this if a gas flow say 50 𝑐𝑓 is 

transported through a pipeline (𝑖, 𝑗) with compressor station that 

uses 4% of the transported gas to power this station, thus only 

48 𝑐𝑓 of gas is expected to arrive at node 𝑗. Mathematically: 

(100 − 4)% 𝑜𝑓 50 𝑐𝑓 

=
96

100
× 50 = 48 

⇒ 𝛼(𝑖, 𝑗) =
96

100
=

24

25
 

 

Figure 4 Flow network with compressor. 

Cavalieri (2017) proposed a novel complete steady–state flow 

formulation in governing nonlinear system of equations and 

expression of the error function to be minimized while locating 

the solution. 
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Node Potentials 

  For each node 𝑖, the node potential 𝑑𝑖 is equal to the cost or 

length of the cheapest or shortest paths from 𝑠 𝑡𝑜 𝑡 Sedlock 

(1985), Rosen (1998). The node potential tells the path with 

the least cost of shipment from the source node 𝑠 to the end 

node 𝑡.  

 

Figure 5 Network showing node potentials 

The start node is given the potential value of 0, since there 

have been no movement. Other node’s potentials are updated 

with respect to the shortest or cheapest path from 𝑠. From 

figure 5, 

𝑑𝑠 = 0 

𝑑𝑖 = 𝑑𝑠 + 𝑘(𝑠, 𝑖) = 0 + 2 

⇒ 𝑑𝑖 = 2 

𝑑𝑗 = 𝑑𝑠 + 𝑘(𝑠, 𝑗); 𝑑𝑖 + 𝑘(𝑖, 𝑗) = 0 + 8; 2 + 5 

𝑑𝑗 = 8; 7 𝑏𝑢𝑡 8 > 7 

𝑇ℎ𝑢𝑠    𝑑𝑗 = 7 

Reduced Cost 

In order to keep each pipeline’s cost nonnegative, we calculate 

its reduced cost after every iteration using the updated node 

potentials. Mathematically, from figure 5 

𝑘(𝑠, 𝑖) ← 𝑘(𝑠, 𝑖) + 𝑑𝑖 − 𝑑𝑗  

𝑘(𝑠, 𝑖) ← 2 + 0 − 2 = 0 

𝑘(𝑠, 𝑗) = 1 

𝑘(𝑖, 𝑗) = 0 

Residual Network 

This is a network showing unused pipeline capacities. It is 

constructed using the residual capacity 𝑐𝑟. 

𝑐𝑟(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − 𝑓(𝑖, 𝑗) 

From figure 5, if 15 unit of gas flow is sent from through 𝑠 →
𝑡, the residual network will have a residual capacity of 5, since 

𝑐𝑟(𝑠, 𝑗) = 𝑐(𝑠, 𝑗) − 𝑓(𝑠, 𝑗) 

𝑐𝑟(𝑠, 𝑗) = 20 − 15 = 5 

 

Figure 6 Simple Residual Network 

From figure 6 we observe that (𝑠, 𝑗) is replaced with (𝑠, 𝑗) 

and (𝑗, 𝑠). The forward arrow (𝑠, 𝑗) indicates the amount of 

unused pipeline capacity. The backward arrow (𝑗, 𝑠) indicates 

the amount of used capacity and flow that can be sent back. 

Proposed Algorithm for The Generalized Flow Problem 

This algorithm is achieved by extending the successive 

shortest path algorithm to accommodate 𝛼 (changes in flow). 

Just as in the successive shortest path algorithm, we optimize 

flow and paths simultaneously. We send gas flow from 𝑠 𝑡𝑜 𝑡 

along the shortest path (with respect to the pipeline’s optimal 

paths), update the residual network Apanapudor and Izevbizua 

(2018). We look for another available path to send flow etc. 

The algorithm terminates when there are no paths from 𝑠 𝑡𝑜 𝑡 

in the residual network. 

i. Initialize 𝑓 = 0 across the network. 

ii. While (the residual network 𝐺𝑟 contains a path 

from node 𝑠 𝑡𝑜 𝑡) do 

iii. Find node potentials and calculate reduced 

costs using node potentials 

iv. Find cheapest path (with respect to the 

pipeline’s cost of shipment) from 𝑠 𝑡𝑜 𝑡 

v. Find edge with least capacity 𝑐 along path. 

vi. If (Path has 𝑛 numbers of  multipliers 𝛼 on 

edges)   

vii. Send flow 𝑓 = (
1

𝛼1∙𝛼2⋯𝛼𝑛
) × 𝑐 ≤ 𝑐 along this 

path 

viii. Update the residual network 𝐺𝑟 

 

 

Analysis, results and discussion 

In order to demonstrate the key moment of the optimization 

method, we give the solution of an illustrative example of a 

gas network containing 7 nodes, 9 pipelines, 2 compression 

stations on edges (𝑠, 𝑎) 𝑎𝑛𝑑 (𝑝, 𝑗) both using 5% of the 

distributed gas for its operation. 

Such data gathered would enable us do a robust analysis of our 

methods, which would go a long way to improve the 

performance of our system and management decision 

processes, Okwonu, et al., (2022) 

 Given the network 

𝐺 = (𝑉, 𝐸) 

Where 𝑉 = {𝑠, 𝑎, 𝑖, 𝑗, 𝑝, 𝑞, 𝑡} the set of nodes is      

 𝐸 =
{(𝑠, 𝑎), (𝑎, 𝑖), (𝑎, 𝑝), (𝑖, 𝑝), (𝑖, 𝑗), (𝑝, 𝑗), (𝑝, 𝑞), (𝑗, 𝑡), (𝑞, 𝑡)}  is 

the set of edges. 

The multiplier 𝛼 of some edges indicating compressors are 

given in rectangles.  

 

Figure 7 Nodes, edges (pipelines), multiplier (compressor) 
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Figure 8 Flow Network  

First, we initialize a flow of 0 across network and calculate 

each node’s potential using the cost of shipment. 

𝑑𝑠 = 0; 𝑑𝑎 = 𝑑𝑠 + 𝑐(𝑠, 𝑎) = 10, 𝑐(𝑠, 𝑎) = 10 

𝑑𝑖 = 𝑑𝑠 + 𝑑𝑎 + 𝑐(𝑎, 𝑖) = 15 

 𝑑𝑝 = 18, 𝑑𝑞 = 24 , 𝑑𝑗 = 20, 𝑑𝑡 = 25   

 

Figure 9 Flow network with node potentials 

Next we calculate the reduced cost for each edge using the node 

potentials 

 

𝑘(𝑝, 𝑞) ← 𝑘(𝑝, 𝑞) + 𝑑𝑝 − 𝑑𝑞 , 

where (𝑝, 𝑞) ∈ 𝐸 ;   𝑝, 𝑞 ∈ 𝑉 

 

 
Figure 10 Node potentials and reduced costs 

The first optimal path is 𝒔 → 𝒂 → 𝒊 → 𝒋 → 𝒕. The edge with least 

capacity is (𝑖, 𝑗) = 380. Instead of sending 380 as usual, we send  
1

𝛼
× 380 =

1

19
20

× 380 

𝑓 = 400 

Thus, we send 400 flow through this path. 

After going through (𝑠, 𝑎), only 380 is available for node 𝑖 
 

 
Figure 11 1st optimal path 𝒔 → 𝒂 → 𝒊 → 𝒋 → 𝒕   

The corresponding residual network and new node potentials. 

𝑑𝑠 = 0; 𝑑𝑎 = 0 ; 𝑑𝑖 = 0; 𝑑𝑝 = 12 

𝑑𝑗 = 𝑑𝑝 + 𝑐(𝑝, 𝑗) = 12 

𝑑𝑞 = 12 ; 𝑑𝑡 = 12 

Residual capacity 

𝑐𝑟(𝑝, 𝑞) = 𝑐(𝑝, 𝑞) − 𝑓(𝑝, 𝑞) 

 

 
Figure 12 Residual network with new node potentials  

Reduced cost for each edge using new node potentials 

𝑘(𝑠, 𝑎)0 ; 𝑘(𝑎, 𝑖) = 0, 𝑘(𝑎, 𝑝) = 0; 𝑘(𝑖, 𝑗) = 0, 
𝑘(𝑖, 𝑝) = 12 ;   𝑘(𝑝, 𝑞) = 0 

𝑘(𝑝, 𝑗) = 0 ;   𝑘(𝑗, 𝑡) = 19 ;  𝑘(𝑞, 𝑡) = 0 
 

 
Figure 13 Reduced Cost 

The second optimal path is 𝒔 → 𝒂 → 𝒑 → 𝒒 → 𝒕. The edge with 

least capacity is (𝑎, 𝑝) = (𝑖, 𝑗) = 285. Instead of sending 285 as 

usual, we send  
1

𝛼
× 380 =

1

19
20

× 285 

𝑓 = 300 

Thus, we send 300 flow through this path. 
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Figure 14 2ndt optimal path 𝒔 → 𝒂 → 𝒑 → 𝒒 → 𝒕   

The corresponding residual network and new node potentials. 

 
Figure 15 Residual network with new node potential 

Reduced cost for each edge using new node potentials 

𝑘(𝑠, 𝑎) = 0 ;  𝑘(𝑎, 𝑖) = 0, 
  𝑘(𝑎, 𝑝) = 0 ;  𝑘(𝑖, 𝑗) = 0, 
𝑘(𝑖, 𝑝) = 0 ;   𝑘(𝑝, 𝑞) = 0 

𝑘(𝑝, 𝑗) = 0 ;   𝑘(𝑗, 𝑡) = 0 

𝑘(𝑞, 𝑡) = 0 

The third and only path left is 𝒔 → 𝒂 → 𝒊 → 𝒑 → 𝒋 → 𝒕. The edge 

with least capacity is = (𝑗, 𝑡) = 361 We send  
1

𝛼1
∙

1

𝛼2
× 361 =

1

19
20

×
1

19
20

× 361 

𝑓 = 400 

Thus, we send 400 flow through this path 

 
Figure 16 3rdt optimal path 𝒔 → 𝒂 → 𝒊 → 𝒑 → 𝒋 → 𝒕   

 
Figure 17 Final Residual network 

Since both (𝑗, 𝑡) 𝑎𝑛𝑑 (𝑞, 𝑡) can’t take any more flow, the 

algorithm ends here. 

After all iterations the final flow network will be: 

 
Figure 18 Flow Network 

Calculating the objective function: 

∑ 𝑘(𝑝, 𝑞)𝑓(𝑝, 𝑞)

(𝑝,𝑞)∈𝐸

 

=(10 × 1110) + (770 × 5) + (285 × 8) + (380 × 5) +
(285 × 6) 

     +(390 × 25) + (750 × 5) + (285 × 5) 

= 41615 

 

 

 

Conclusion 

Natural gas networks are systems with hundreds or thousands of 

kilometers of pipelines, production, storage and distribution 

centers, compression stations, and many other devices like valves 

and regulators, which when put together helps with gas 

distribution. Due to the nature of these networks, the assumption 

of conservation of flow on every edge is violated.  

From our example, the inclusion of compressor stations along 

(𝑠, 𝑎) and (𝑝, 𝑗) makes the above assumption false as flow is not 

conserved. From figure 18, observe that a total of 1110 units of 

gas is delivered into the network at 𝑠 but only 1026 arrived at its 

destination 𝑡. From our calculations, both compressor stations 

along (𝑠, 𝑎) and (𝑝, 𝑗) uses 5% the transported gas for its running 

and operation. The above algorithm optimizes both flow and cost 

of shipment simultaneously. Finally, Figure 11 gives the optimal 

path from 𝑠 𝑡𝑜 𝑡 which is 𝒔 → 𝒂 → 𝒊 → 𝒋 → 𝒕 Depending on the 

length or cost of shipment. From figure 18, 1026 units of gas is 

the maximum amount of flow that can move from 𝑠 𝑡𝑜 𝑡 per unit 

time. 

 

Recommendation for further studies 

In this paper, the Successive shortest path algorithm of graph 

theory is extended to solve a generalized form of the minimum 

cost flow problem in natural gas networks. The algorithm can be 

used to model and solve important flow problems in network 

based systems where flow is not conserved as its being distributed 

for example the distribution of volatile gas that is susceptible to 

evaporation, transportation of raw crude, where flow might be lost 

due to leaks, the financial sector, where currencies have different 

values and rates. Based on the algorithm, detailed analysis and 

calculation procedure, one can create computer codes using non-

negative real weighted values from actual information and data.  
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